We distribute technical grade of boric acid, and boric acid is not used for the manufacture of foodstuffs and beverages. Briefly, information on boric acid read as follows:

Our product specification as follow:


Analytical Result
Bulk Density


What is Boric acid

Boric AcidBoric acid is a chemical compound that writen as H3BO3, is a chemical compound that can be used for insecticides, antiseptics, buffer solution, flame retardant, preservative on wood, rattan and neutron absorber, and as reagents in the manufacture of other chemical compounds. Boric acid form of colorless crystals or white powder and soluble in water.



The free acid is found native in certain volcanic districts such as Tuscany, the Lipari Islands and Nevada, issuing mixed with steam from fissures in the ground; it is also found as a constituent of many minerals (borax, boracite, boronatrocaicite and colemanite). The presence of boric acid and its salts has been noted in seawater. It also exists in plants and especially in almost all fruits.

Boric acid was first prepared by Wilhelm Homberg (1652–1715) from borax, by the action of mineral acids, and was given the name sal sedativum Hombergi ("sedative salt of Homberg"). However Borates, including boric acid, have been used since the time of the Greeks for cleaning, preserving food, and other activities.



Boric acid may be prepared by reacting borax (sodium tetraborate decahydrate) with a mineral acid, such as hydrochloric acid:

Na2B4O7·10H2O + 2 HCl → 4 B(OH)3 [or H3BO3] + 2 NaCl + 5 H2O



Boric acid is soluble in boiling water. When heated above 170 °C, it dehydrates, forming metaboric acid (HBO2):

H3BO3 → HBO2 + H2O

Metaboric acid is a white, cubic crystalline solid and is only slightly soluble in water. Metaboric acid melts at about 236 °C, and when heated above about 300 °C further dehydrates, forming tetraboric acid or pyroboric acid (H2B4O7):

4 HBO2 → H2B4O7 + H2O

The term boric acid may sometimes refer to any of these compounds. Further heating leads to boron trioxide.

H2B4O7 → 2 B2O3 + H2O

Boric acid does not dissociate in aqueous solution as a Brønsted acid, but is a Lewis acid which interacts with water molecules to form the tetrahydroxyborate ion, as confirmed by Raman spectroscopy:

B(OH)3 + H2O is in equilibrium with B(OH)−
4 + H+ (Ka = 5.8x10−10 mol/l; pKa = 9.24)

Polyborate anions are formed at pH 7–10 if the boron concentration is higher than about 0.025 mol/L. The best known of these is the tetraborate ion, found in the mineral borax:

4 B(OH)−
4 + 2 H+ is in equilibrium with B4O2−
7 + 9 H2O

Boric acid makes an important contribution to the absorption of low frequency sound in seawater.


Crystal structure

Crystalline boric acid consists of layers of B(OH)3 molecules held together by hydrogen bonds. The distance between two adjacent layers is 318 pm.



Based on mammalian median lethal dose (LD50) rating of 2,660 mg/kg body mass, boric acid is poisonous if taken internally or inhaled in large quantities. However, it is generally considered to be not much more toxic than table salt. The Thirteenth Edition of the Merck Index indicates that the LD50 of boric acid is 5.14 g/kg for oral dosages given to rats, and that 5 to 20 g/kg has produced death in adult humans. The LD50 of sodium chloride is reported to be 3.75 g/kg in rats according to the Merck Index.

Long term exposure to boric acid may be of more concern, causing kidney damage and eventually kidney failure (see links below). Although it does not appear to be carcinogenic, studies in dogs have reported testicular atrophy after exposure to 32 mg/kg bw/day for 90 days. This level is far lower than the LD50.

According to boric acid IUCLID Dataset published by the European Commission, boric acid in high doses shows significant developmental toxicity and teratogenicity in rabbit, rat, and mouse fetuses as well as cardiovascular defects, skeletal variations, mild kidney lesions. As a consequence, in August 2008, in the 30th ATP to EU directive 67/548/EEC, the EC decided to amend its classification as reprotoxic category 2 and to apply the risk phrases R60 (may impair fertility) and R61 (may cause harm to the unborn child).

At a recent European Diagnostics Manufacturing Association (EDMA) Meeting several new additions to the Substance of Very High Concern (SVHC) candidate list in relation to the Registration, Evaluation, Authorisation and restriction of Chemicals Regulations 2007 (REACH) were discussed. The registration and review completed as part of REACH has meant the current classification of Boric Acid CAS 10043-35-3 / 11113-50-1 as of 1 December 2010 will be listed as H360FD (May damage fertility. May damage the unborn child.)




Boric acid solutions used as an eye wash or on abraded skin are known to be especially toxic to infants, especially after repeated use because of its slow elimination rate.

Boric acid can be used as an antiseptic for minor burns or cuts and is sometimes used in dressings or salves. Boric acid is applied in a very dilute solution as an eye wash in a 1.5% solution (1 tbsp per quart or 15 cm3 per L) of sterilized water. Boric acid is the only acid that is good for the eyes. Boric acid eye wash, typically administered using an eye cup, relieves the eyes after they become irritated from long periods of swimming in the chlorinated water of a swimming pool.

As an anti-bacterial compound, boric acid can also be used as an acne treatment. Boric acid can be used to treat yeast and fungal infections such as candidiasis (vaginal yeast infections) by inserting a vaginal suppository containing 600 mg of boric acid daily for 14 days or for yeast infection of the male pubic region (jock-itch or strong genital odor) by applying the powder to the skin all over the pubic region for several days to a week. It is also used as prevention of athlete's foot, by inserting powder in the socks or stockings, and in solution can be used to treat some kinds of otitis externa (ear infection) in both humans and animals. The preservative in urine sample bottles (red cap) in the UK is boric acid.


Tris-borate-EDTA (TBE buffer) is widely used for the electrophoresis of nucleic acids and has a higher buffer capacity than a Tris-acetate-EDTA TAE buffer. It can be used for DNA and RNA polyacrylamide and agarose gel electrophoresis. Is used as a reagent and precursor of other substances, eg. tetraacetyl diborate.


Boric acid was first registered in the US as an insecticide in 1948 for control of cockroaches, termites, fire ants, fleas, silverfish, and many other insects. The product is generally considered to be safe to use in household kitchens to control cockroaches and ants. It acts as a stomach poison affecting the insects' metabolism, and the dry powder is abrasive to the insects' exoskeleton.

Boric acid is also made into a paste or gel form as a powerful and effective insecticide much safer to humans than many other insecticides. The paste or gel has attractants in it to attract insects. The boric acid slowly causes dehydration.


In combination with its use as an insecticide, boric acid also prevents and destroys existing wet and dry rot in timbers. It can be used in combination with an ethylene glycol carrier to treat external wood against fungal and insect attack. It is possible to buy borate-impregnated rods for insertion into wood via drill holes where dampness and moisture is known to collect and sit. It is available in a gel form and injectable paste form for treating rot affected wood without the need to replace the timber. Concentrates of borate-based treatments can be used to prevent slime, mycelium and algae growth, even in marine environments.

Boric acid is added to salt in the curing of cattle hides, calfskins and sheepskins. This helps to control bacteria development and helps to control insects.


Colloidal suspensions of nanoparticles of boric acid dissolved in petroleum or vegetable oil can form a remarkable lubricant on ceramic or metal surfaces with a coefficient of sliding friction that decreases with increasing pressure to a value ranging from 0.10 to 0.02. Self-lubricating H3BO3 films result from a spontaneous chemical reaction between water molecules and B2O3 coatings in a humid environment. In bulk-scale, an inverse relationship exists between friction coefficient and Hertzian contact pressure induced by applied load.

Boric acid is used to lubricate carrom and novuss boards, allowing for faster play.

Nuclear power

Boric acid is used in nuclear power plants as a neutron poison to slow down the rate at which fission is occurring. Fission chain reactions are generally driven by the amount of neutrons present (as products from previous fissions). Natural boron is 20% boron-10 and about 80% boron-11. Boron-10 has a high cross-section for absorption of low energy (thermal) neutrons. By adding more boric acid to the reactor coolant which circulates through the reactor, the probability that a neutron can survive to cause fission is reduced. Therefore, changes in boric acid concentration effectively regulate the rate of fission taking place in the reactor. This method is only used in pressurized water reactors (PWRs). Boron is also dissolved into the spent fuel pools containing used uranium rods. The concentration is high enough to keep neutron multiplication at a minimum.


The primary industrial use of boric acid is in the manufacture of monofilament fiberglass usually referred to as textile fiberglass. Textile fiberglass is used to reinforce plastics in applications that range from boats, to industrial piping to computer circuit boards.

In the jewelry industry, boric acid is often used in combination with denatured alcohol to reduce surface oxidation and firescale from forming on metals during annealing and soldering operations.

Boric acid is used in the production of the glass in LCD flat panel displays.

In electroplating, boric acid is used as part of some proprietary formulas. One such known formula calls for about a 1 to 10 ratio of H3BO3 to NiSO4, a very small portion of sodium lauryl sulfate and a small portion of H2SO4.

It is also used in the manufacturing of ramming mass, a fine silica-containing powder used for producing induction furnace linings and ceramics.

Boric Acid is one of the most commonly used substances that can neutralize active hydrofluoric acid (HF). It works by forcing the free F- anions into complex salts. This process removes the virulence of hydrofluoric acid, particularly its ability to sequester ionic calcium from blood serum which can lead to cardiac arrest (amongst other things); such an event can occur from just minor skin contact with HF.

Boric acid is added to borax for use as welding flux by blacksmiths and farriers.

Boric acid, in combination with silicone oil, is used to manufacture Silly Putty.